ABSTRACT

Ovarian cancer is the deadliest gynecologic malignancy and the fifth leading cause of death from cancer in women in the U.S. The Wnt(β-catenin) pathway, which signals through the Frizzled (FZD) receptor family and several co-receptors, has long been implicated in cancer. We have developed ipafricept (FZD8-Fc, OMP-54F28), a recombinant fusion protein consisting of the ligand-binding domain of FZD8 and a human IgG1 Fc fragment. This fusion protein blocks Wnt signaling induced by multiple Wnt family members by binding and sequestering WNT.

Using minimally passaged ovarian patient-derived xenograft tumors (PDX), we demonstrate that ipafricept is efficacious in combination with chemotherapy in ovarian cancer. Utilizing an in vivo serial transplantation assay, we quantified a reduction of the tumor initiating cell frequency by ipafricept in combination with paclitaxel. Additionally, we have discovered that pre-treatment with ipafricept several days prior to paclitaxel therapy enhances the activity of both agents when compared to delivering the drugs simultaneously.

The anti-tumor effect observed is directly associated with a modulation of Wnt pathway gene sets. In responsive tumors, we discovered that a large number of WNT target genes were significantly down-regulated by ipafricept (e.g. AXIN2, LRP5/6, and FZD8). Conversely, in non-responsive tumors, these genes were either unchanged or up-regulated by the combination therapy. Histologic analysis revealed that total β-catenin protein levels were reduced by ipafricept alone and in combination with paclitaxel in responsive tumors but were unchanged in non-responsive tumors. We are using these tumors to develop biomarkers that can be used clinically.

These data demonstrate the potential therapeutic benefit of targeting Wnt signaling in ovarian cancer. A Phase 1b clinical trial is currently examining ipafricept in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer.

RESULTS

Ipafricept blocks Wnt ligands and prevents them from binding to FZD receptors.

WNT Signaling Molecule LEF1 Modulated by Ipafricept in Responsive Tumors

Ipafricept Reduces the Cancer Stem Cell Frequency in Ovarian Cancer

Combinatorial Treatment Enhanced by Antagonizing the WNT Pathway with Ipafricept Prior to Taxanes

SUMMARY

1. A subset of ovarian patient-derived xenograft tumors are responsive to the Wnt antagonist ipafricept and combination of ipafricept with Taxol.
2. Responsive tumors have reduced levels of WNT target genes post-therapy.
3. Ipafricept reduces expression of WNT signaling molecule LEF1 and reduces the ovarian cancer stem cell frequency.
4. Anti-tumor activity of ipafricept is enhanced by pre-dosing ipafricept prior to Taxol.
5. Targeting the WNT pathway in ovarian cancer may benefit a subset of patients.